Forage Sampling and Analysis Interpretation

Megan Van Emon
Extension Beef Cattle Specialist
April 17, 2018
Why Sample?

• Forage quality

• Nutrient requirements

• Additional feeds or supplements

• Mix forages
Equipment

- Forage probe
- Bucket
- Sample bags
- Drill

- Square foot box
- Clippers
- Bucket
- Sample bags
Large Round Bales

• Sample at least 10%
• Collect 2 cores from each bale
• Collected from the circumference
Square Bales

- Sample at least 10%
- Perpendicular to the bale surface
- 2 cores from large squares
Standing Forage

• Random selection
• Use the “M” pattern
• Regular intervals
• Clip at grazing height
 – Cut samples to 3 inches long
• Increase sample numbers for larger fields or pasture
• Large variations = more samples per field or pasture
“M” Pattern
Silage Sampling

• If packed and stored properly, CP and fiber will be stable
 – Can sample before packing
 – Multiple samples from each chopper wagon
 – Middle of the load
 – Store in fridge or freezer
 – Mix all samples together
Silage Sampling

- **Upright Silo**
 - Don’t sample from top or bottom 3 feet
 - Remove spoilage to collect sample

- **Silage Bunker**
 - Do not collect from the face
 - Remove silage similar to feeding and place the pile on the bunker floor

- **Bag**
 - Can collect from the face
 - Core samples can also be collected
TMR Sampling

• Mix the TMR
• Distribute in the bunk
• Collect samples along the bunk
 – Top, middle, and bottom
• Place all samples in a bucket and mix
• Collect ¼ of the total sample
Sampling Tips

• Always collect plenty of sample

• Collect a representative sample

• A corded drill and forage probe make your job easier
Forage Analysis Interpretation

- Dry matter
- Protein
- Fiber
- Energy
- RFV and/or RFQ
- Minerals
- Nitrates, mold, mycotoxins
Protein

• Soluble
• Degradable
• ADICP
• Available
Fiber

- Lignin – not digestible
- ADF – cellulose and lignin
- NDF – hemicellulose, cellulose, and lignin
- NFC – non-structural carbohydrates, starch
Energy

• Crude fat – ether extract
• TDN – digestible fiber, protein, lipid, and carbohydrates
 – Calculation based on ADF and NDF
 – Best used for forage-based rations
• NE system – accounts for energy losses in digestion
 – Calculations based on TDN
 – Best used for concentrate-based rations
RFV and RFQ

• RFV – allows comparisons across like forages
 RFV = \[
 \frac{[\text{DMI} \times \text{DDM}]}{1.29}
 \]

 Digestible Dry Matter (DDM) = 88.9 – [0.78 x ADF (% of DM)]
 Dry Matter Intake (DMI) = 120 ÷ NDF (% of DM)

• RFQ – uses digestibility as well as fiber
 RFQ = \[
 \frac{[\text{DMI} \times \text{TDN}]}{1.23}
 \]

 Digestible Dry Matter (DDM) = 88.9 – [0.78 x ADF (% of DM)]
 TDN = (NFC x 0.98) + (CP x 0.93) + (FA x 0.97 x 2.25) + (NDFn x (NDFD/100) – 7)
Minerals

• Ash – total mineral content
 – Forages: 3-12%
 – Concentrates: 1-4%
 – Excessive values may mean soil contamination

• Macro and micro-mineral analysis

• Many forage analyses may include Ca, P, K, and Mg
Other Analyses

• Nitrates – especially important during drought or after frost
• Mold and yeast counts – times of increased moisture
 – Does not identify species of mold
• Mycotoxins – produced by molds
 – Expensive
 – Small concentrations can be toxic
Questions

Megan Van Emon
406-874-8286
megan.vanemon@montana.edu