UTILIZING HAY STORAGE TECHNIQUES TO IMPROVE FORAGE QUALITY AND ANIMAL PERFORMANCE

Danielle Peterson, MS Forage Research Lab Manager Montana State University

OUTLINE

I. Introduction

- Importance of hay storage
- Previous research
- 2. Hay storage trial

HAY STORAGE

- Minimize DM losses
- Maintain soluble carbohydrate content
- Minimize changes in ADF and NDF
- Minimize changes in CP and ADICP
- Maintain NDFD and RFQ

MONTANA STORAGE

Why is our study unique?

HAY STORAGE LOSSES

- I. Dry matter loss
- 2. Forage nutrient quality loss3. Animal performance loss

DRY MATTER LOSSES

- Significant in round bales stored outside and uncovered
 - 0.8-40% (Anderson et al., 1981; Huhnke, 1988, Belyea et al. 1985)
- South Dakota
 - I year
 - Uncovered
- Canada
 - I year
 - > Tarped
- > Oxidation, weathering, and molding Missouri
 - ≻ >I year
 - Covered storage for PYR and MSH, but not for SS

Dry Matter Loss (%)

	South Dakota	Canada	Missouri
IN		6%	2.5%
SS	0.8%	40%	15%
PYR	10.3%	30%	5.8%
MSH			6.6%

(Chisholm et al., 1980; Wickes and Cochrane, 1982; Atwal et al., 1984)

FORAGE NUTRIENT QUALITY LOSSES

- Weathering and leaching of soluble CHO's
 - Increases ratio of structural to non-structural CHO's
 - Decreased forage quality

Location	Storage	CP (%)	ADF (%)	Digestibility (%)	Source	
South	SS	5.65		39	Chisholm et al.	
Dakota	PYR	5.41		32	(1980)	
Canada	SS	17	41			
	PYR	17	43		Atwai et al. (1984)	
	INSIDE	16	36			
Hawaii	SS	8	45	45	Chung and	
	INSIDE	8	43	48	Verma (1991)	

ANIMAL PERFORMANCE LOSSES OUTSIDE VS. INSIDE

	Ani Refus	mal al (%)	DM + F + anima (%	landling I refusal 6)	Feed storag	ing + ge (%)	DMI (% BW)		ADG (kg/day)		Source
	Out	In	Out	In	Out	In	Out	In	Out	In	
Louisiana	23	1.2	65	3.5							Verma and Nelson (1983)
Missouri					40	15	2.11	2.35	0.4-0.5	0.6-0.7	Belyea et al. (1985)
Canada							1.4	2.1			Atwal et al. (1984)

* Hay stored outside were stored in a SS

Hay storage is IMPORTANT!

Inside stored hay is the best method followed by the SS and PYR

MSH is not common in the literature

DRY MATTER AND FORAGE QUALITY LOSSES ASSOCIATED WITH STORING LARGE ROUND **BALES OUTSIDE AT VARYING GEOGRAPHIC LOCATIONS IN THE** STATE OF MONTANA

Objectives

 Quantify DM and forage quality losses associated with three different methods of outdoor round bale hay storage at two different sites in Montana

 Determine which OUTDOOR hay storage method is the best for varying Montana conditions

Location Year I

- Bozeman Agricultural Research and Teaching Farm (BART farm)
- Northern Agricultural Research Center (NARC)

Harvest and Baling

- 100% grass hay
- Moisture = 12-15%
- Plastic net wrapping
- BART: Vermeer 605M round baler, avg bale weight = 906 lbs
- NARC: Case IH RB565 round baler, avg bale weight = 1420 lbs

Storage

- II days post baling
- Initial and final weights were taken to evaluate DM loss
- Directly on soil
- BART: July Mar (9 months)
- NARC: Sept Mar (7 months)

Inside (INSIDE) n=2 (per site)

Forage Quality Loss Evaluation

- 2 depths: 6" and 12" cores
- Bale placement evaluated
 - SS.I, SS.O, PYR.I, PYR.O, MSH.T, MSH.B, INSIDE
- Analyzed using wet chemistry for:
 - DM
 - CP and ADICP
 - ADF and NDF
 - NDFD48
 - TDN
 - RFQ

RESULTS

Dry Matter Loss

RESULTS

Weight change (DM basis) for bales stored inside a barn (INSIDE), on the bottom of the mushroom formation (MSH.B), on the top of the mushroom formation (MSH.T), on the inside of the pyramid formation (PYR.I), on the outside of the pyramid formation (PYR.O), on the inside of the single-stack formation (SS.I), or on the outside of the single-stack formation (SS.O) in Bozeman, MT (BART) and Havre, MT (NARC)

	BA	RT	NARC						
Bale Placement	Wt Change (lbs)	% Change	Wt Change (lbs)	% Change					
INSIDE	8.4 ^d	<	96.8 ª	6.4					
MSH.B	60.8 ^a	6.3	I6 .I [♭]	1.2					
MSH.T	11.0 ^d	1.2	46.7 ^{ab}	3.2					
PYR.I	47.0 ^{ab}	4.9	55.8 ^{ab}	3.8					
PYR.O	26.9 ^{bcd}	2.9	32.2 ^{ab}	2.2					
SS.I	31.1 ^{bc}	3.3	70. I . ^{ab}	4.7					
SS.O	20. I ^{cd}	2.2	29.1 ^{ab}	2.1					
^{a,b,c,d} Within a row, means without a common superscript differ ($P \le 0.10$)									

Weight Change at BART

RESULTS

- •Hay nutrient content
- •Percent change

	Storage Method Pvalue						
		Storage Method				r value	
Quality	Date	INSIDE	MSH	PYR	SS	% Change	
DM (%)	Start	93.6	92.6	92.3	93		
	Finish	93.2	92.8	92.9	93		
	Average	93.4 ^a	92.7 ^b	92.6 ^b	93 ^{ab}		
	% Change	-0.48	0.22	0.65	-0.02	0.2966	
CP (%)	Start	10.1	11.1	11.7	11.1		
	Finish	10.5	11.6	11.9	10.8		
	Average	10.3 ^b	.4 ^{ab}	.8ª	10.9 ^{ab}		
	% Change	4.06	5.16	I.47	-2.05	0.7706	
ADICP ¹ (%)	Start	1.2	1.6	1.5	1.4		
	Finish	1.4	1.6	1.5	1.4		
	Average	1.3	1.6	1.5	1.4		
	% Change	23.83	2.62	-0.59	-1.38	0.3428	
ADF (%)	Start	43	43.5	41.7	42.9		
	Finish	41.7	43.9	42.9	42.5		
	Average	42.4 ^b	43.7 ^a	41.8 ^{ab}	42.7 ^{ab}		
	% Change	-3	1.05	0.84	-0.77	0.8341	
NDF (%)	Start	63.1	64.5	60.9	61.4		
	Finish	60.5	62.5	58.4	61		
	Average	61.8 ^{ab}	63.5 ^a	59.6 ^b	61.2 ^{ab}		
	% Change	-4.05	-2.75	-4.18	-0.66	0.8861	
NDFD48 ² (%)	Start	38.1	39	36.9	36.3		
	Finish	37.3	37.7	35.8	37.8		
	Average	37.7	38.4	36.4	37.1		
	% Change	-2.04	-3.29	-3.05	4.06	0.2279	
TDN (%)	Start	54.7	54.5	55.2	55.35		
	Finish	55.5	53.7	55.4	55.1		
	Average	55.1 ^{ab}	54.1 ^b	55.3ª	55.2ª		
	% Change	1.47	-1.35	0.46	-0.44	0.7621	
	Start	123	119.5	126.3	120.8		
	Finish	129	6.8	135.3	127.3		
	Average	126 ^{ab}	118.1 ^b	130.5ª	124 ^{ab}		
	% Change	5.05	_ 3	891	62	0 7783	

Changes in quality for large round bales stored inside a hay barn (INSIDE), as a mushroom formation (MSH), as a pyramid formation (PYR), or as a single-stack

ab Within a row, means without a common superscript differ ($P \le 0.10$) ADICP: acid detergent insoluble crude protein; ² NDFD48: 48-hour neutral detergent fiber digestibility; ³ RFQ: relative forage quality

Changes in quality for large round bales stored inside a hay barn (INSIDE), as a mushroom formation (MSH), as a pyramid formation (PYR), or as a single-stack formation (SS) in Havre, Montana for seven months Storage Method **P** value SS Quality Date INSIDE **MSH PYR** % Change **DM (%)** Start 93.1 93 93.1 93.1 Finish 94.2 93.8 94.4 93.9 Average 93.7 93.4 93.7 93.5 % Change 0.83 0.89 0.2457 1.18 1.45 **CP (%)** 12.7 12.1 11.4 12.1 Start Finish 11.6 12.1 11.4 12.2 12.2^{ab} Average 12.1ª 11.4^b 12.1^a 0.3 0.4824 % Change -8.7 0.76 0.28 ADICP¹ (%) 0.8 Start Finish 0.9 2.5 1.1 1.8 0.9 Average 148.12 -6.15 8.1 27.53 0.1895 % Change **ADF (%)** 38.7 38.8 34.1 Start 39.2 Finish 38.1 43.5 40.3 36 Average **38.4**^a **41.2**^a **39.7**^a 35^b % Change -1.54 12.11 2.97 5.52 0.2783 NDFD48² (%) 41.4 38.9 35.9 Start 39.8 Finish 37.8 39.8 37 36.7 38.4^{ab} 36.3^b Average **39.6**^a **39.4**^a -8.69 2.37 2.45 0.2304 % Change -6.62 RFQ³ Start 152.5 146.5 143.3 163.8 Finish 147 111.5 136 156.8 149.8^{ab} 129^c 139.6^{bc} 160.3^a Average -24.03 0.1523 % Change -3.6 -5.08 -4.16

a,b,c Within a row, means without a common superscript differ (P \leq 0.10)

Changes in quality for large round bales stored inside a hay barn (INSIDE), as a mushroom formation (MSH), as a pyramid formation (PYR), or as a single-stack formation (SS) in Havre, Montana for seven months

			Storage Method			P values		
Quality	Date	INSIDE	MSH	PYR	SS	Treatment *date	% Change	
NDF (%)	Start	60	58.4	59.6	53.9	0.0314		
	Finish	57.3	64.7	59.7	54.9			
	Average	58.7 ^b	61.5ª	59.6 ^{ab}	54.4 ^c			
	% Change	-4.5ª	10.8 ^b	0.35ª	2 ^a		0.0327	
TDN (%)	Start	57.9	57.8	57	60. I	0.098		
	Finish	57.9	54	56.3	59.5			
	Average	57.9 ^a	55.9 ^b	57 ^{ab}	59.8°			
	% Change	0.01ª	-6.6 ^b	-1.3ª	-1.12ª		0.0751	
a,b,c Within a row, means without a common superscript differ (P \leq 0.10)								

RESULTS

Nutrient quality based on bale placement

BART – PYRAMID

NARC – MUSHROOM

NARC – MUSHROOM

NARC – MUSHROOM

DISCUSSION

BART

- Overall hay quality (% change) did not differ by treatment
 - Bale placement
 ADF, NDF, and TDN: PYR.I and PYR.O

NARC

- Overall quality (% change) only differed for NDF and TDN
 MSH
- Bale placement

≻DM: MSH.B

- >ADICP, ADF, NDF, TDN, RFQ: MSH.B
- MSH is not ideal for conditions at Havre

DISCUSSION

Overall quality of bales after storage varies based on geographical location in Montana

DM and forage quality loss due to:

- Precipitation
- Wind speed and direction
- Sun exposure
- Bale density

CONCLUSION

- Indoor stored bales and SS stored bales maintain the most consistent DM and forage quality in Bozeman and Havre, Montana
- Year 2 study
 - Additional location
 - 12" compared to 24" core samples

QUESTIONS?

BALE DENSITY

- BART: 4 lbs/cubic ft.
- NARC: 9 lbs/cubic ft.

WHY 84 DAY FEEDING TRIAL?

- This is the lowest amount of days necessary to determine animal performance parameters
- Resources, we may have ran out of hay

WHAT IS EXPECTED LIGNIN CONTENT IN ALFALFA AT 10% BLOOM?

• Ranges from 5-15% and is less repeatable than ADF and NDF

COST ANALYSIS

- Based on cost, would you recommend this to producers?
- GM HarvXtra = \$13-15 per lb
- Conventionally bred = \$5-7 per lb
- Conventional = \$2-5 per lb
- Milestone Seeds in Billings
- Claimed that Hi-Gest was better across the board for it's cost

WHY HARVXTRA?

- We did research with private company
- However, we recently submitted a grant to test the differences between HarvXtra and Hi-Gest in Montana Environment

PRODUCTION IN TONS

• I.3 T/acre for both varieties

HOW MUCH PROTEIN DOES A GROWING HEIFER REQUIRE

- Maintenance, and growth requirements
- Growing = 14% because animals are trying to gain muscle during growth

WHAT CONSTITUTES A GOOD QUALITY HAY

- CP > 7% for ruminants
- TDN > 65%
- RFQ values greater than 150
- NDF lower than 40%
- ADF lower than 30%
- NDFD48 ~ 50%
- NDFD240 ~ 65

WOULD IT BE PRACTICAL TO ONLY FEED ALFALFA IN MONTANA

- No, the benefit of using r-lig alfalfa as a Montana producer would mainly be due to a larger harvest window for beef cattle producers.
- Alfalfa would be used as a supplement to meet energy and protein requirements

IF WE FEED LESS WILL ANIMALS RESPOND THE SAME?

- We can't answer that based on this research
- If we feed less animals will most likely meet their nutrient, protein, and energy requirements metabolically.
- However, fill may not be satisfied.

WHY WAS LIGNIN NOT REDUCED BY THE EXPECTED 10-15%

- Seeding year
 - During the seeding year, these plants are using all their resources to grow and create a root carbohydrate system
 - At this time they might not have as much leaf content as post seeding year plants
 - Plants that have already established can work on growing more leaves and already have CHO storage available for their use
- Harvest Date
 - Plants harvested later may have more lignin because of temperatures and less soluble CHOs
 - However, both varieties had a fairly low lignin content

WHAT IS A PRIMARY CONCERN FOR PRODUCERS USING R-LIG ALFALFA?

- Bloat
 - Rapidly digested proteins
 - Lower lignin = more soluble proteins available
- Cost!
 - Mentioned on previous slide