

Managing for gut health

Dr. Greg Penner Associate Professor and Centennial Enhancement Chair in Ruminant Nutritional Physiology University of Saskatchewan

www.usask.ca

Take-home messages

- A consistent supply of DM and nutrients are required to maintain gut health
- Production responses have not been well characterized but can be extrapolated
- Management strategies to minimize variation in intake may yield greatest rewards
- Recovery following a challenge takes time, but can be accelerated

Requirements of the gastrointestinal tract

- Absorptive and secretory
 - Supply energy
 - Regulates ruminal pH
 - Urea recycling
- Barrier
 - First arm of the immune response
 - Prevents pathogen and antigen translocation
- Communicative
 - Facilitates cross-talk between host and microbiota
 - Nutrient sensing

www.usask.ca

Why is there variation in rumen pH?

www.usask.ca

Penner et al., 2009

Greater absorption reduces risk for low pH

Barrier function

- Ability to promote selective permeability
 - Allow absorption of nutrients
 - Prevent movement of non-desired compounds, toxins, enteric flora
- Damage occurs in two forms
 - Lesions
 - Compromised tight-cell junctions

Evidence supporting stability in the rumen microbial community structure 3 2 POST 1 **65** → () 34 **∗**0¹⁴ Cow 0-0 7 POS CA2 5332 34 4 -1 2 Cow 4790 -2 -3 -4 -1.5 0.5 -0.5 0 1.5 2 -2 -1 CA1

Weimer et al., 2010; JDS

Gut health is more than just the rumen

5		Gorka et al., 2017				
م 4						
Weight, kg 1 2 2 5						
Sei Vei						
0						_
U	Rume	n Oma	IS.	Abomas.	SI	
	Region		Length, m			
	Duodenum			0.53		
	Jejunum		21.62			
	lleum Cecum			0.80 0.22		
	Colon			4.6	3	
	Total			27.8	30	
	Length	in ft		91.	2	

www.usask.ca

Watanabe et al., unpublished

Rumen acidosis: more than just the rumen!

www.usask.ca

Pederzolli, unpublished

What is gut health?

Efficient nutrient absorption Good types of microbes Good barrier function Regulated pH Good fibre digestion capability Optimal bacterial protein production Large rumen papillae Adequate capacity

Balanced residence time and passage rate

What is gut health?

Forage-based

Attributes

- Active and regulated microbial community (fibre digestion)
- Nutrient absorption
- Barrier function

Concentrate-based

Attributes

- Active and regulated microbial community (starch digestion)
- Nutrient absorption
- Barrier function

Requirements

Consistent supply of dry matter and
 nutrients

Requirements

 Consistent supply of dry matter and nutrients

Challenges to gastrointestinal function?

- Inherent challenges within current production settings
 - Management
 - Weaning
 - Dietary challenges
 - Environment
 - Heat stress
 - Competition
 - Physiological
 - Parturition

Low/transient low feed intake

Rapid dietary change / induction of rumen acidosis

Direct effects of ruminal acidosis

Calsamiglia et al., 2002; JDS

Low pH induces an inflammatory response

Khafipour et al., 2012: CJAS

Low pH induces an inflammatory response

Khafipour et al., 2012: CJAS

Barrier function of the rumen epithelium

Aschenbach and Gäbel, 2000; JAS

Acidification impairs absorption

www.usask.ca

Wilson et al., 2012; JAS

CONTROL

ACIDOSIS

Steele et al., 2009

CONTROL

ACIDOSIS

Steele et al, 2009

Inconsistent nutrient supply: the real challenge for gut health

- Variation in DMI and nutrient intake alters:
 - Nutrient supply for microbes
 - Growth response and antigen release
 - Nutrients available for cattle
 - Function of the rumen and whole gut

Weaning compromises total tract barrier function

 14 newborn Holstein bull calves

NIVERSITY OF

- Weaned on d 42 after a 7 d stepdown program vs. or not weaned
- Cr-EDTA used as an indicator of barrier function

Greater urinary Cr = reduced barrier function

www.usask.ca

Low feed intake for newly received feedlot cattle

	Week relative to arrival			
Variable	l st week	2 nd week	3 rd and 4 th weeks	
DMI (% of BW)	0.5% to 1.5%	1.5% to 2.5%	2.5% to 3.5%	

Hutcheson and Cole, 1986; JAS

Variation in nutrient supply: beef cow example

- Swathgrazing forage allocation cycle
 - 3 d/paddock or longer

www.usask.ca

Jose, Penner, McKinnon, Lardner, unpublished

Information Required

- Does the severity of short-term feed restriction affect the absorptive and barrier functions of the gastrointestinal tract?
- Does the severity of short-term feed restriction affect recovery of absorptive and barrier function?
- Can we manipulate the diet to mitigate the response?

		Ingredient, % of DM		
			Barley silage	30
			Grass-Alfalfa hay	30
 18 cannulated Angus heifers 3 treatments 			Barley grain (roll	ed) 32
			Pellet	8
 75% of feed ad libitum 		Nutrient composition		
 50% of feed ad libitum 			DM,%	65.8 ± 1.9
 25% of feed ad libitum 			OM,% of DM	92.3 ± 1.2
 5 periods 			CP,% of DM	11.2 ± 0.4
			Fat, % of DM	1.8 ± 0.0
			NDF,% of DM	40.1 ± 0.4
Baseline	Feed restriction	Recovery 1	Recovery 2	Recovery 3

www.usask.ca

Zhang et al., 2013; JAS

Feed restriction decreases the VFA (nutrients for cows) in the rumen

www.usask.ca

Rumen pH increases during feed restriction

Nutrient absorption is reduced with feed

www.usask.ca

Barrier function of the gut is reduced with feed restriction Treatment × period; P < 0.001

Feed restriction impacts cattle when they return to full feed conditions

www.usask.ca

Ad libitum feeding after feed restriction induces rumen acidosis

Zhang et al., 2013; JAS

Absorption capability did not recover until about 3 wk after feed restriction

www.usask.ca

Management strategies to improve gut health

- Consistent feed supply that meets nutrient requirements
 - Good husbandry, bunk management, grain processing
- Feed additives that help to stabilize rumen fermentation
 - Ionophores, yeast, probiotics, essential oils, etc.
- Can we predict the low feed intake event?
 - Recovery diets?

Can We Mitigate the Response by Changing the

Forage-to-Concentrate Ratio?

- Animals and Experimental Design
- 20 cannulated Angus heifers
 - 4 treatments
 - High forage/High forage
 - High forage/Moderate forage
 - Moderate forage/High forage
 - Moderate forage/Moderate forage

www.usask.ca

Role of forage in recovery after low feed intake

	Treatment ¹		
	HF	MF	
Ingredient, % of DM			
Grass hay	46	30	
Barley silage	46	30	
Barley grain	0	32	
Pellet ²	8	8	
Chemical composition, ³ g/kg \pm SD			
DM	584 ± 69.7	557 ± 47.3	
OM	907 ± 2.3	925 ± 1.9	
СР	107 ± 5.7	111 ± 5.4	
Crude fat	21 ± 0.4	19 ± 0.7	
NDF	527 ± 4.6	405 ± 1.4	
ADF	291 ± 5.4	209 ± 4.5	
NEm, ⁴ MJ/kg	4.61	6.09	
NEg, ⁴ MJ/kg	2.03	2.21	

Albornoz et al., 2013; JAS

Low feed intake decreases SCFA absorption

www.usask.ca

Albornoz et al., 2013; JAS

Feeding a high forage diet improves recovery

www.usask.ca

Albornoz et al., 2013; JAS

Nutritional strategies to accelerate recovery of the gastrointestinal tract (GIT)

- Several nutrients may help promote GIT function
 - Butyrate Gorka et al., 2013; Kawalski et al., 2015
 - Betaine
 - Coccidia infection Kettunen et al. 2001; Fetterer et al. 2003
 - Antioxidants
 - Superoxide dismutase benefits GIT in mice Vouldoukis et al. 2004
 - May counteract hypoxic conditions Dengler et al., 2015

Use of a compound feed additive to accelerate recovery of the GIT

- Fed 'High'
- 3 d low feed intake at 50%

	Treatment		
Ingredient, % DM	High	Storm	Storm+
Barley silage	9	20	20
Barley grain	79	67.5	66.6
Min/vit	12.5	12.5	12.5
RP betaine			0.7
Antioxidant			0.01
Butyrate			0.2

www.usask.ca

Use of a compound feed additive to accelerate recovery of the GIT

	Treatment		
Ingredient, % DM	High	Storm	Storm+
Barley silage	9	20	20
Barley grain	79	67.5	66.6
Min/vit	12.5	12.5	12.5
RP betaine			0.7
Antioxidant			0.01
			0.2

www.usask.ca

Increasing the F:C ratio and use of a compound

Only STORM+ recovered to baseline DMI after low feed intake

Increasing the F:C ratio and use of a compound supplement stabilized pH T_{0} Treatment x period, P = 0.022

www.usask.ca

Increasing the F:C ratio and use of a compound supplement improved absorption P = 0.011

www.usask.ca

Take-home messages

- A consistent supply of DM and nutrients are required to maintain gut health
- Production responses have not been well characterized but can be extrapolated
- Management strategies to minimize variation in intake may yield greatest rewards
- Recovery following a challenge takes time but can be accelerated

Saskatchewan Ministry of Agriculture

Natural Sciences and Engineering Research Council of Canada www.usask.ca

Conseil de recherches en sciences naturelles et en génie du Canada